
A Mathematical Framework for
Evaluating the Creativity of Ideas

Samuel Schapiro∗
Spiral Works

sam@spiralworks.ai

Royce Moon †

Spiral Works
royce@spiralworks.ai

Aishik Sanyal
Spiral Works

aishik@spiralworks.ai

Abstract

Creative reasoning is a crucial aspect of problem solving and a significant driver
of human progress. While prevailing theories of creativity in psychology and
philosophy are abundant (Simonton, 2023; Thagard, 2012; Boden, 2004; Koestler,
1964; Güss et al., 2021), they cannot be used to precisely quantify the creativity
of individual ideas. To overcome this issue, we synthesize past philosophical and
psychological studies of creativity into a mathematical framework for evaluating
the creativity of scientific and industrial ideas, intended to serve broadly as a
foundation for future research in creativity. We view our theoretical contributions
as a critical first step towards consolidating our understanding of creativity in the
short term, enhancing the creativity of generative models in the medium term, and
automating creative discovery in science and industry in the long term.

1 Mathematical Framework

Definition 1.1 (Domain) Let C refer to the set of all concepts and R to the set of all logical and
semantic relations in the entirety of human knowledge, and let D refer to a particular scientific
or industrial field (e.g., chemistry, marketing, mathematics, etc.) or subfield (e.g., drug discovery,
algorithm design). A scientific or industrial domain D is a triple (MD, ID, TD), where

1. MD := (CD,DisD) is a conceptual reasoning space consisting of (i) a subset of concepts
CD ⊂ C relevant to D and (ii) a function of semantic distance, computed over D, between
concepts DisD : CD × CD → [0, 1] (e.g., cosine similarity, LSA (Deerwester et al., 1990)).3

2. Iα
D := {I = ((C1, R1, C2, R2, . . . , Cn), g) | (∀i ∈ {1, . . . , n})(Ci ∈ CD, Ri ∈ R),

g ∈ GD, UD(I) ≥ α, n ≥ 2} is the set of truths, facts, theorems, laws, etc. belonging
to D (Simonton, 2004), i.e., the set of existing ideas (defined in Definition 1.2) with utility
(defined in Definition 1.3) above some α > 0; and

3. TD := (GD,PD) is a tree of depth d ∈ N representing the hierarchical goal structure
of D (Chung et al., 1989), with node set GD, edge set PD, and f : GD → N giving the
0-indexed depth of each node. The root node is given by g0 ∈ GD and the tree is constructed
recursively as follows: for all i < d, g′ is a child node of gi if solving g′ is necessary to
solving gi.

Definition 1.2 (Idea) An idea I := ((C1, R1, C2, R2, . . . , Cn), g) is a tuple of (i) a chain of thought
(C1, R1, C2, R2, . . . , Cn) formed by a conceptual path (C1, . . . , Cn) ∈ Cn joined pairwise by a
relational reasoning path (R1, . . . , Rn−1) ∈ Rn−1 for some n, and (ii) a goal g ∈ GD it solves.

∗Also affiliated with the University of Illinois, Urbana-Champaign; part of this work done while visiting the
Simons Institute for the Theory of Computing, Berkeley.

†Also affiliated with the University of Michigan.
3We assume the semantic dissimilarity DisD(Ci, Cj) = 1 for all concept pairs Ci, Cj /∈ CD.
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Figure 1: An example of Definitions 1.1, 1.2, & 1.3 for domain generalization in machine learning.

Definition 1.3 (D-Creativity) The D-Creativity of an idea I is the product of its novelty, utility, and
surprise (Simonton, 2004, 2023). That is, CreativityD(I) := ND(I) · UD(I) · SD(I), where

1. ND(I) := I[I /∈ Iα
D] ∈ {0, 1} is the novelty of I, indicating whether or not the idea already

exists in the set of truths, facts, theorems, laws, etc. belonging to D;

2. UD(I) := Si(I) · CoD(I) is the utility of I , defined as the product of its simplicity and
consilience (Thagard, 1988):

(a) Si(I) := 1/n is the simplicity of I , the inverse of the length of its conceptual path;
(b) CoD(I) := (d− f(g))/d is the consilience of the idea I , where d is the depth of TD

and f(g) is the depth of goal g, e.g., a depth 1 goal in a depth 5 tree evaluates to 4/5.

3. SD(I) := 1
n−1

∑n
i=1 DisD(Ci, Ci+1) is the surprise of I , defined as the average pairwise

semantic dissimilarity of its conceptual path, reflecting a departure from D’s a priori beliefs4

In Figure 1, with domain generalization in machine learning as the choice of D, we instantiate the
framework in Definitions 1.1 and 1.2 to evaluate the D-creativity of three ideas using Definition 1.3

Future use cases for this framework are numerous, including (i) as a post-processing, fine-tuning,
or prompt engineering template for pre-trained models to guide creative outputs in a theoretically
supported way, (ii) as a blueprint for future automated creativity systems that can automatically
construct domains (Definition 1.1) and produce candidate ideas (Definition 1.2), (iii) as a starting
point for future mathematical study of creativity, and more. Limitations of this framework include
its use of (i) binary-valued novelty when novelty may actually occur in degrees, (ii) that ideas are
presupposed to solve goals without having been verified for logical consistency or evaluated as to
how well they solve goals, and that (iii) ideas are assumed to only solve one goal, when in reality,
ideas may solve multiple goals simultaneously.

4This is inspired by forward flow, proposed in Gray et al. (2019) to measure the capacity for human creativity
as the ability to make distant associations (Simonton, 2004).
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A Appendix

A.1 Example Details

In Figure 1, we instantiate the framework defined in Definitions 1.1 and 1.2 to evaluate the creativity of
three candidate ideas in the chosen subfield domain generalization in machine learning according
to Definition 1.3. In order to compute the semantic dissimilarity function DisD : CD × CD → [0, 1],
we use a variant of latent semantic analysis defined in Gray et al. (2019), where we count the co-
occurrence frequency of concept pairs over a corpus of text, consisting of a concatenated set of 10
survey papers in domain generalization (Ramponi, Plank, 2020; Zhou et al., 2022; Wang et al., 2022;
Liu et al., 2023; Lee yi et al., 2022; Rohlfs, 2024; Sheth et al., 2022; Wang et al., 2023; Khoee et al.,
2024; Hupkes et al., 2023).

Semantic Dissimilarity Measure Frequency of co-occurrence is a basic measure of semantic
dissimilarity that only serves to illustrate the basic example we construct in this paper. Future studies
using this framework as a starting point for obtaining creative outputs in a theoretically supported
way should investigate more elaborate semantic dissimilarity measures.

Out of Domain Knowledge Although the examples portrayed in Figure 1 consist solely of concepts
in the concept set CD for the chosen example domain, in practice, novelty can be achieved by
incorporating concepts in C \ CD (out of domain knowledge) into ideas intended to solve goals
belonging to the goal tree TD in domain D.
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